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Continuously Measured Systems, Path Integrals,
and Information
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A continuously measured quantum system may be described by restricted path
integrals (RPI) or equivalently by non-Hermitian Hamiltonians. The measured
system is then considered as an open system, the influence of the environment
being taken into account by restricting the path integral or by inclusion of an
imaginary part in the Hamiltonian. This way of description of measurements
naturally follows from the Feynman form of quantum mechanics without any
additional postulates and may be interpreted as an information approach to
continuous quantum measurements. This reveals deep features of quantum physics
concerning relations between quantum world and its classical appearance.

1. INTRODUCTION

It is widely believed that quantum mechanics is not closed, and that

only after adding some form of quantum theory of measurement does it

become a complete and self-sufficient theory. We shall argue that the theory

of continuous quantum measurements may in fact be considered as a natural

part of quantum mechanics provided the latter is taken in the Feynman path-
integral form (Feynman, 1948) including the rules for summing up probability

amplitudes. The main instruments of the resulting theory of continuous mea-

surements are restricted path integrals (RPI) and non-Hermit ian Hamiltonians

(Mensky, 1979a, b, 1993). The RPI approach may be regarded as an informa-

tion approach to continuous quantum measurements just as the von Neumann’ s

projection postulate presents an information approach to instantaneous quan-
tum measurements.

So-called ª instantaneousº measurements (which are in reality not instan-

taneous, but very short) may be obtained as a limiting case of continuous
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measurements. Therefore, the whole quantum theory of measurements may

be derived, in the framework of the RPI approach, from quantum mechanics

in the path-integral form. Hence, quantum mechanics may be considered as
a closed theory. It looks nonclosed only if the overidealized concept of an

instantaneous measurement is considered instead of realistic concept of a

continuous measurement.

2. CONTINUOUS QUANTUM MEASUREMENTS AND
RESTRICTED PATH INTEGRALS (RPI)

During recent decades the theory of continuous quantum measurements

has been under thorough investigation (Mensky, 1979a, b, 1993, Zeh, 1971;
Davies, 1976; Srinivas, 1977; Walls and Milburn, 1985; Milburn, 1988; Joos

and Zeh, 1985; Diosi, 1988; Peres, 1993; Carmichael, 1993). The interest in

this field significantly increased in connection with the quantum Zeno effect

predicted in Misra and Sudarshan (1977), Chiu et al. (1977), and Peres (1980)

and experimentally verified in Itano et al. (1990). In most cases studying

continuous quantum measurements was based on particular models of measur-
ing devices. In contrast, the phenomenological and therefore model-indepen-

dent restricted-path-integrals (RPI) approach to continuous measurements has

been proposed (Mensky, 1979a, b, 1983, 1993; see also Khalili, 1981; Bar-

chielli et al., 1982; Caves, 1986, 1987) following the idea of Feynman (1949).

The measured system is considered in the RPI theory of measurements

as an open system. The back influence of the measuring device (environment)
onto the measured system is taken into account by restricting the path integral.

The restriction is determined by the information which the measurement

supplies about the measured system. Let us consider the main points of

this approach.

The evolution of a closed quantum system during a time interval T is
described by the evolution operator UT. The matrix element of the operator

UT between the states with definite positions is called the propagator and

may be expressed in the form of the Feynman path integral3

UT(q9, q8) 5 ^ q9 | UT | q8 & 5 # d[ p] d[q] exp F i

" #
T

0

( pqÇ 2 H( p, q, t)) G (1)

If the system with the same dynamical properties (the same Hamiltonian)

undergoes a continuous (prolonged in time) measurement (and therefore is

considered as being open, interacting with a measuring device or environ-

3 It is convenient for our goals to use a phase-space representation of the path integral. The
variables q and p may be multidimensional.
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ment), its evolution may be described (Mensky, 1993) by the set of partial
evolution operators U a

T depending on the output (readout) a of the

measurement4

| c a
T & 5 U a

T | c 0 & , r a
T 5 U a

T r 0(U
a
T) ²

The partial propagators are expressed by restricted path integrals. This

means (Mensky, 1993) that the path integral for U a
T must be of the form (1),

but restricted according to the information given by the measurement readout

a . The information given by a may be described by a weight functional

w a [p, q] (positive, with values between 0 and 1) so that the partial propagator
has to be written as a weighted path integral

U a
T(q9, q8) 5 ^ q9 | U a

T | q8 & (2)

5 # d[ p] d[q] w a [ p, q] exp F i

" #
T

0

( pqÇ 2 H( p, q, t)) G
The probability density for each a to arise as a measurement readout

is given (Mensky, 1993) by the trace of the density matrix r a
T, so that the

probability for a to belong to some set ! of readouts is equal to

Prob( a P !) 5 # !

d a Tr r a
T (3)

with an appropriate measure d a on the set of readouts.

All this concerns the situation when the measurement readout a is

known (selective description of the measurement). If the readout is unknown
(nonselective description), the evolution of the measured system may be

represented by the density matrix

r T 5 # d a p a
T 5 # d a U a

T r 0(U
a
T) ² (4)

The generalized unitarity condition

# d a (U a
T) ² U a

T 5 1

provides conservation of probabilities.

In the special case when monitoring an observable A 5 A ( p, q, t) is

considered as a continuous measurement, the measurement readout is given
by the curve

[a] 5 {a(t) | 0 # t # T}

4 Physically the readout is recorded in some way or another in the state of the environment
(measuring device).
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characterizing the values of this observable in different time moments. If the

square average deflection

^ (A 2 a)2 & T 5
1

T #
T

0

[A(t) 2 a (t)]2 dt

is taken as a measure of deviation of the observable A (t) 5 A ( p (t), q (t), t)
from the readout a (t), then the weight functional describing the measurement

may be taken5 in the Gaussian form:

w[a][p, q] 5 exp H 2 k #
T

0

[A (t) 2 a (t)]2 dt J
The constant k characterizes the resolution of the measurement and may be

expressed in terms of the ª measurement errorº D aT which is achieved during
the period T of the measurement:

k 5
1

T D a2
T

is constant, hence D a 2
T , 1

T

The resulting path integral

U [a]
T (q9, q8) 5 # d[ p] d[q]

3 exp H i

" #
T

0

( pqÇ 2 H ) dt 2 k #
T

0

(A ( p, q, t) 2 a (t))2 dt J
has the form of a conventional (nonrestricted) Feynman path integral (1) but

with the effective Hamiltonian

H[a]( p, q, t) 5 H ( p, q, t) 2 i k " (A ( p, q, t) 2 a (t))2 (5)

instead of the original Hamiltonian H. Therefore, instead of calculating a

restricted path integral, one may solve the SchroÈ dinger equation with a non-

Hermitian effective Hamiltonian:

-
- t

| c i & 5 1 2 i

"
H 2 k (A 2 a(t))2 2 | c i & (6)

If we solve this equation with the initial wave function c 0 describing

the initial state of the measured system, then the solution c T in the final time
moment represents the state of the system after the measurement, under the

condition that the measurement results in the readout [a]. The wave function

5 The choice of the weight functional determines the class of measurements under consideration.
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c T obtained in this way has a nonunit norm. If the initial wave function is

normalized, then the norm of the final wave function, according to equation

(3), determines the probability density of the measurement output [a]:

P[a] 5 | c T|
2 (7)

We obtain the following scheme of calculation for the selective descrip-
tion of the continuous measurement (when the readout is known):

(1) Choose an arbitrary readout [a] and solve equation (6).
(2) The probability density of [a] is given by equation (7).

(3) The state of the system after the measurement is | c T & .

The nonselective description of the measurement (if the readout is unknown)
is given by the density matrix s i defined by (4) and satisfying (Mensky,

1994) the equation

r Ç 5 2
i

"
[H, r ] 2

k
2

[A, [A, r ]] (8)

3. RPI AS AN INFORMATION APPROACH TO CONTINUOUS
QUANTUM MEASUREMENTS

The description of continuous quantum measurements by restricted path

integrals (RPI) may be justified in different ways. The most direct way

(Konetchnyi et al., 1993) is an analysis of a composite system containing

both the measured system and its environment (measuring device). Alterna-

tively, one can consider a series of instantaneous measurements with the help
of von Neumann’ s projection postulate and then go over to the continuous

measurement as a limit of small time intervals between the instantaneous

measurements (Mensky, 1983, 1993).

It is very interesting, however, that in the framework of the Feynman

version of quantum mechanics the RPI approach needs no justification at all.

This approach is natural and self-consistent in this framework. This is why
Feynman was able to formulate the idea of the RPI approach as a short

remark in his paper (Feynman, 1949). Moreover, the RPI approach, naturally

following from Feynman quantum mechanics, is more general than what can

be obtained in the limit of a series of instantaneous measurements. It describes

a wider class of continuous and continual (protracted in time and space)

measurements than those derivable as limits of some or other repeated mea-
surements (Mensky, 1993).

The reason the RPI approach follows from the path-integral version of

quantum mechanics is that the concept of probability amplitude is used in a

much more comprehensive way in this version. In particular, the amplitude
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A[p, q] 5 exp F i

" #
T

0

( pqÇ 2 H( p, q, t)) G (9)

is introduced and physically interpreted as a probability amplitude for the

system to propagate along a definite path in the phase space. If this is accepted,

then the usual quantum mechanical rules for amplitudes determine the ampli-

tudes for more complicated events, in particular, for propagation of the system

between two points of the configuration space. If the system is closed and

therefore nothing is known about the path along which it propagates, all
amplitudes of the form (9) have to be summed up, leading to the conventional

Feynman integral (1). If a continuous measurement takes place (so that the

system is open), one has to keep in mind that the measurement supplies some

information about the evolution of the system. In summing up the amplitudes

(9) this information must be taken into account.

If the information given by the measurement can be expressed by a
weight functional w a [p, q], then summation of amplitudes takes the form of

equation (2). Hence, instead of directly postulating partial propagators, we

can derive them from the more basic postulates of the path-integral version

of quantum mechanics.

This is both interesting and unexpected. It is commonly believed that
quantum mechanics is not closed, since it does not include any theory of

measurements. A theory of measurements (for example, von Neumann’ s

projection postulate) is customarily appended as a necessary counterpart

forming, together with quantum mechanics, a closed theory. However, this

proves to be unnecessary. As argued above, the path-integral formulation of

quantum mechanics includes also the RPI theory of continuous measurements.
A theory of instantaneous measurements (including von Neumann’ s postulate)

may be then obtained as a limit (Calarco, 1995).

We see therefore that the seeming necessity to postulate a theory of

measurement independently of quantum mechanics is only a consequence of

overidealization. The origin of this necessity is in treating a measurement as

an instantaneous act. An instantaneous measurement appears to be external
with respect to quantum mechanical (SchroÈ dinger) evolution and to need

special postulates. The situation, however, is radically different if the measure-

ment is considered as a temporally extended process and quantum mechanics

is accepted in the path-integral form. Then the measurement may be described

in a nonseparably integral way with the quantum mechanical evolution (Men-

sky, 1988). The mathematical apparatus describing both counterparts of this
unity is given by restricted path integrals.

Restricted path integrals describe the influence of the measuring environ-

ment on the open (measured) quantum system without an explicit model of

the environment . Instead, the RPI approach needs only very general character-
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istics of the environment. Namely, it is necessary to know what information

about the evolution of the system is recorded in the state of the environment

(as a measurement readout). This information determines what weight func-
tional has to be used in the path integral. Having a restricted path integral,

we can describe correctly both the probability distribution of measurement

readouts and the final state of the measured system.

Thus, the influence of the environment on the system of interest may

be given in terms of information. Therefore, the RPI approach is in fact an

information approach to the theory of continuous quantum measurements.
This indicates the fundamental character of the approach.

The information approach in the quantum theory of measurement is not

novel. The very first quantum theory of (instantaneous) measurements based

on the von Neumann reduction postulate may be considered as an example

of an information approach. In this theory both the probability distribution

for measurement outputs and the final state of the system may be found if
we know what information the measurement supplies. For example, for the

measurement of an observable with a discrete spectrum we need to know what

eigenvalue is obtained as the measurement output. Given this information, we

can determine, with the help of the corresponding projector, both the probabil-

ity of the measurement output and the final state of the system.
In the RPI theory of continuous quantum measurements the information

principle obtains one more realization having a rich structure and wide range

of applications. It has been shown above that the RPI theory is, in contrast

to the von Neumann postulate, a natural part of (the path-integral version

of) quantum mechanics.

4. CONCLUSION

The restricted-path-integral (RPI) approach to continuous quantum mea-

surements enables one to describe the influence of the measurement on the

measured system without explicitly considering any model of the measuring

device (environment). Instead of the model, one needs to know the information
supplied by the measurement.

It is remarkable that knowledge of this information is sufficient for

correctly accounting for the influence of the measuring environment on the

system. This feature enables one to derive the RPI theory of continuous

measurements from the path-integral version of quantum mechanics without

any additional postulates. Besides, this shows that the RPI approach is an
information approach to continuous measurements just as the von Neumann

projection theory is an information approach to instantaneous measurements.

The information character of the RPI theory indicates clearly that it

reveals deep internal qualities of quantum mechanics. This theory may be
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used to investigate further the relations between quantum and classical phys-

ics, between the quantum world and its classical appearance.
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